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Abstract
In recent years, attacks targeting web browsers and their

plugins have become a prevalent threat. Attackers deploy
web pages that contain exploit code, typically written in
HTML and JavaScript, and use them to compromise un-
suspecting victims. Initially, static techniques, such as
signature-based detection, were adequate to identify such
attacks. The response from the attackers was to heavily
obfuscate the attack code, rendering static techniques insuf-
ficient. This led to dynamic analysis systems that execute
the JavaScript code included in web pages in order to expose
malicious behavior. However, today we are facing a new
reaction from the attackers: evasions. The latest attacks
found in the wild incorporate code that detects the presence
of dynamic analysis systems and try to avoid analysis and/or
detection.

In this paper, we present Revolver, a novel approach to au-
tomatically detect evasive behavior in malicious JavaScript.
Revolver uses efficient techniques to identify similarities be-
tween a large number of JavaScript programs (despite their
use of obfuscation techniques, such as packing, polymor-
phism, and dynamic code generation), and to automatically
interpret their differences to detect evasions. More precisely,
Revolver leverages the observation that two scripts that are
similar should be classified in the same way by web malware
detectors (either both scripts are malicious or both scripts
are benign); differences in the classification may indicate
that one of the two scripts contains code designed to evade a
detector tool.

Using large-scale experiments, we show that Revolver
is effective at automatically detecting evasion attempts in
JavaScript, and its integration with existing web malware
analysis systems can support the continuous improvement
of detection techniques.

1 Introduction

In the last several years, we have seen web-based malware—
malware distributed over the web, exploiting vulnerabilities

in web browsers and their plugins—becoming a prevalent
threat. Microsoft reports that it detected web-based exploits
against over 3.5 million distinct computers in the first quarter
of 2012 alone [22]. In particular, drive-by-download attacks
are the method of choice for attackers to compromise and
take control of victim machines [12,29]. At the core of these
attacks are pieces of malicious HTML and JavaScript code
that launch browser exploits.

Recently, a number of techniques have been proposed
to detect the code used in drive-by-download attacks. A
common approach is the use of honeyclients (specially in-
strumented browsers) that visit a suspect page and extract
a number of features that help in determining if a page is
benign or malicious. Such features can be based on static
characteristics of the examined code [5,7], on specifics of its
dynamic behavior [6, 20, 25, 28, 32, 40], or on a combination
of static and dynamic features [34].

Drive-by downloads initially contained only the code
that exploits the browser. This approach was defeated by
static detection of the malicious code using signatures. The
attackers started to obfuscate the code in order to make the
attacks impossible to be matched by signatures. Obfuscated
code needs to be executed by a JavaScript engine to truly
reveal the final code that performs the attack. This is why
researchers moved to dynamic analysis systems which exe-
cute the JavaScript code, deobfuscating this way the attacks
regardless of the targeted vulnerable browser or plugin. As a
result, the attackers have introduced evasions: JavaScript
code that detects the presence of the monitoring system and
behaves differently at runtime. Any diversion from the origi-
nal targeted vulnerable browser (e.g., missing functionality,
additional objects, etc.) can be used as an evasion.

As a result, malicious code is not a static artifact that, after
being created, is reused without changes. To the contrary,
attackers have strong motivations to modify the code they
use so that it is more likely to evade the defense mechanisms
employed by end-users and security researchers, while con-
tinuing to be successful at exploiting vulnerable browsers.
For example, attackers may obfuscate their code so that it
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does not match the string signatures used by antivirus tools
(a situation similar to the polymorphic techniques used in
binary malware). Attackers may also mutate their code with
the intent of evading a specific detection tool, such as one of
the honeyclients mentioned above.

This paper proposes Revolver, a novel approach to auto-
matically identify evasions in drive-by-download attacks.
In particular, given a piece of JavaScript code, Revolver
efficiently identifies scripts that are similar to that code,
and automatically classifies the differences between two
scripts that have been determined to be similar. Revolver
first identifies syntactic-level differences in similar scripts
(e.g., insertion, removal, or substitution of snippets of code).
Then Revolver attempts to explain the semantics of such dif-
ferences (i.e., their effect on page execution). We show that
these changes often correspond to the introduction of eva-
sive behavior (i.e., functionality designed to evade popular
honeyclient tools).

There are several challenges that Revolver needs to ad-
dress to make this approach feasible in practice. First, typical
drive-by-download web pages serve malicious code that is
heavily obfuscated. The code may be mutated from one visit
to the page to the next by using simple polymorphic tech-
niques, e.g., by randomly renaming variables and functions
names. Polymorphism creates a multitude of differences
in two pieces of code. From a superficial analysis, two
functionally identical pieces of code will appear as very
different. In addition, malicious code may be produced on-
the-fly, by dynamically generating and executing new code
(through JavaScript and browser DOM constructs such as
the eval() and setTimeout() functions). Dynamic
code generation poses a problem of coverage; that is, not
all JavaScript code may be readily available to the analyzer.
Therefore, a naive approach that attempts to directly com-
pare two malicious scripts would be easily thwarted by these
obfuscation techniques and would fail to detect their similar-
ities. Instead, Revolver dynamically monitors the execution
of JavaScript code in a web page so that it can analyze both
the scripts that are statically present in the page and those
that are generated at runtime. In addition, to overcome poly-
morphic mutations of code, Revolver performs its similarity
matching by analyzing the Abstract Syntax Tree (AST) of
code, thereby ignoring superficial changes to its source code.

Another challenge that Revolver must address is scala-
bility. For a typical analysis of a web page, Revolver needs
to compare several JavaScript scripts (more precisely, their
ASTs) with a repository of millions of ASTs (potential
matches) to identify similar ones. To make this similarity
matching computationally efficient, we use a number of ma-
chine learning techniques, such as dimensionality reduction
and clustering algorithms.

Finally, not all code changes are security-relevant. For
example, a change in a portion of the code that is never exe-
cuted is less interesting than one that causes a difference in

the runtime behavior of the script. In particular, we are inter-
ested in identifying code changes that cause detection tools
to misclassify a malicious script as benign. To identify such
evasive code changes, Revolver focuses on modifications
that introduce control flow changes in the program. These
changes may indicate that the modified program checks
whether it is being analyzed by a detector tool (rather than
an unsuspecting visitor) and exhibits a different behavior
depending on the result of this check.

By automatically identifying code changes designed to
evade drive-by-download detectors, one can improve detec-
tion tools and increase their detection rate. We also leverage
Revolver to identify benign scripts (e.g., well-known li-
braries) that have been injected with malicious code, and,
thus, display malicious behavior.

This paper makes the following contributions:

1. Code similarity detection: We introduce techniques
to efficiently identify JavaScript code snippets that are
similar to each other. Our tool is resilient to obfuscation
techniques, such as polymorphism and dynamic code
generation, and also pinpoints the precise differences
(changes in their ASTs) between two different versions
of similar scripts.

2. Detection of evasive code: We present several tech-
niques to automatically classify differences between two
similar scripts to highlight their purpose and effect on
the executed code. In particular, Revolver has identified
several techniques that attackers use to evade existing
detection tools by continuously running in parallel with
a honeyclient.

2 Background and Overview

To give the reader a better understanding of the motivation
for our system and the problems that it addresses, we start
with a discussion of malicious JavaScript code used in drive-
by-download attacks. Moreover, we present an example of
the kind of code similarities that we found in the wild.
Malicious JavaScript code. The web pages involved
in drive-by-download attacks typically include malicious
JavaScript code. This code is usually obfuscated, and it
fingerprints the visitor’s browser, identifies vulnerabilities
in the browser itself or the plugins that the browser uses, and
finally launches one or more exploits. These attacks target
memory corruption vulnerabilities or insecure APIs that,
if successfully exploited, enable the attackers to execute
arbitrary code of their choice.

Figure 1 shows a portion of the code used in a recent
drive-by-download attack against users of the Internet Ex-
plorer browser. The code (slightly edited for the sake of
clarity) instantiates a shellcode (Line 8) by concatenating
the variables defined at Lines 1–7; a later portion of the
code (not shown in the figure) triggers a memory corruption
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1 var nop="%uyt9yt2yt9yt2";
2 var nop=(nop.replace(/yt/g,""));
3 var sc0="%ud5db%uc9c9%u87cd...";
4 var sc1="%"+"yutianu"+"ByutianD"+ ...;
5 var sc1=(sc1.replace(/yutian/g,""));
6 var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";
7 var sc2=(sc2.replace(/yutian/g,""));
8 var sc=unescape(nop+sc0+sc1+sc2);

Figure 1: Malicious code that sets up a shellcode.

vulnerability, which, if successful, causes the shellcode to
be executed.

A common approach to detect such attacks is to use hon-
eyclients, which are tools that pose as regular browsers, but
are able to analyze the code included in the page and the side-
effects of its execution. More precisely, low-interaction hon-
eyclients emulate regular browsers and use various heuris-
tics to identify malicious behavior during the visit of a web
page [6, 13, 25]. High-interaction honeyclients consist of
full-featured web browsers running in a monitoring environ-
ment that tracks all modifications to the underlying system,
such as files created and processes launched [28, 38, 40].
If any unexpected modification occurs, it is considered to
be a manifestation of a successful exploit. Notice that this
sample is difficult to detect with a signature, as strings are
randomized on each visit to the compromised site.
Evasive code. Attackers have a vested interest in crafting
their code to evade the detection of analysis tools, while
remaining effective at exploiting regular users. This allows
their pages to stay “under the radar” (and actively malicious)
for a longer period of time, by avoiding being included in
blacklists such as Google’s Safe Browsing [11] or being
targeted by take-down requests.

Attackers can use a number of techniques to avoid detec-
tion [31]: for example, code obfuscation is effective against
tools that rely on signatures, such as antivirus scanners;
requiring arbitrary user interaction can undermine high-
interaction honeyclients; probing for arcane characteristics
of browser features (likely not correctly emulated in browser
emulators) can thwart low-interaction honeyclients.

An effective way to implement this kind of circumventing
techniques consists of adding some specialized “evasive
code” whose only purpose is to cause detector tools to fail
on an existing malicious script. Of course, the evasive code
is designed in such a way that regular browsers (used by
victims) effectively ignore it. Such evasive code could, for
example, pack an exploit code in an obfuscation routine,
check for human interaction, or implement a test for detect-
ing browser emulators (such evasive code is conceptually
similar to “red pills” employed in binary malware to detect
and evade commonly-used analysis tools [10]).

Figure 2 shows an evasive modification to the original
exploit of Figure 1, which we also found used in the wild.
More precisely, the code tries to load a non-existent ActiveX

1 try {
2 new ActiveXObject("yutian");
3 } catch (e) {
4 var nop="%uyt9yt2yt9yt2";
5 var nop=(nop.replace(/yt/g,""));
6 var sc0="%ud5db%uc9c9%u87cd...";
7 var sc1="%"+"yutianu"+"ByutianD"+ ...;
8 var sc1=(sc1.replace(/yutian/g,""));
9 var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";

10 var sc2=(sc2.replace(/yutian/g,""));
11 var sc=unescape(nop+sc0+sc1+sc2);
12 }

Figure 2: An evasion using non-existent ActiveX controls.

control, named yutian (Line 2). On a regular browser,
this operation fails, triggering the execution of the catch
branch (Lines 4–11), which contains an identical copy of
the malicious code of Figure 1. However, low-interaction
honeyclients usually emulate the ActiveX API by simulating
the presence of any ActiveX control. In these systems, the
loading of the ActiveX control does not raise any exception;
as a consequence, the shellcode is not instantiated correctly,
which stops the execution of the exploits and causes the
honeyclient to fail to detect the malicious activity.
Detecting evasive code using code similarity. Code simi-
larity approaches have been proposed in the past, but none of
them has focused specifically on malicious JavaScript. There
are several challenges involved when processing malicious
JavaScript for similarities. Attackers actively try to trigger
parsing issues in analyzers. The code is usually heavily
obfuscated, which means that statically examining the code
is not enough. The malicious code itself is designed to evade
signature detection from antivirus products. This renders
string-based and token-based code similarity approaches
ineffective against malicious JavaScript. We will show later
how regular code similarity tools, such as Moss [37], fail
when analyzing obfuscated scripts. In Revolver, we extend
tree-based code similarity approaches and focus on mak-
ing our system robust against malicious JavaScript. We
elaborate on our novel code similarity techniques in §3.4.

At a high-level overview, we use Revolver to detect and
understand the similarity between two code scripts. Intu-
itively, Revolver is provided with the code of both scripts
and their classification by one or more honeyclient tools. In
our running example, we assume that the code in Figure 1
is flagged as malicious and the one in Figure 2 as benign.
Revolver starts by extracting the Abstract Syntax Tree (AST)
corresponding to each script. Revolver inspects the ASTs
rather than the original code samples to abstract away possi-
ble superficial differences in the scripts (e.g., the renaming
of variables). When analyzing the AST of Figure 2, it detects
that it is similar to the AST of the code in Figure 1. The
change is deemed to be interesting, since it introduces a
difference (the try-catch statement) that may cause a change
in the control flow of the original program. Our system also
determines that the added code (the statement that tries to
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load the ActiveX control) is indeed executed by tools visit-
ing the page, thus increasing the relevance of the detected
change (execution bits are described in more detail in §3.1).
Finally, Revolver classifies the modification as a possible
evasion attempt, since it causes the honeyclient to change its
detection result (from malicious to benign).

Assumptions and limitations. Our approach is based on a
few assumptions. Revolver relies on external detection tools
to collect (and make available) a repository of JavaScript
code, and to provide a classification of such code as either
malicious or benign (i.e., Revolver is not a detection tool by
itself). To obtain code samples and classification scores, we
can rely on several publicly-available detectors [6, 13, 25].

Attackers might write a brand new attack with all com-
ponents (evasion, obfuscation, exploit code) written from
scratch. In such cases, Revolver will not be able to find any
similarities the first time it analyzes these attacks. The lack
of similarities though can be used to our advantage, since
we can isolate brand-new attacks (provided that they can be
identified by other means) based on the fact that we have
never observed such code before.

In the same spirit, to detect evasions, Revolver needs to
inspect two versions of a malicious script: the “regular”
version, which does not contain evasive code, and the “eva-
sive” version, which attempts to circumvent detection tools.
Furthermore, if an evasion is occurring, we assume that a de-
tection tool would classify these two versions differently. In
particular, if only the evasive version of a JavaScript program
is available, Revolver will not be able to detect this evasion.
We consider this condition to be unlikely. In fact, trend
results from a recent Google study on circumvention [31]
suggest that malicious code evolves over time to incorporate
more sophisticated techniques (including evasion). Thus,
having a sufficiently large code repository should allow us
to have access to both regular and evasive versions of a
script. Furthermore, we have anecdotal evidence of mal-
ware authors creating different versions of their malicious
scripts and submitting them to public analyzers, until they
determine that their programs are no longer detected (this
situation is reminiscent of the use of anti-antivirus services
in the binary malware world [18]).

Revolver is not effective when server-side evasion (for
example, IP cloaking) is used: in such cases, the malicious
web site does not serve at all the malicious content to a de-
tector coming from a blocked IP address, and, therefore, no
analysis of its content is possible. This is a general limitation
of all analysis tools and can be solved by means of a better
analysis infrastructure (for example, by visiting malicious
sites from IP addresses and networks that are not known
to be associated with analysts and security researchers and
cannot be easily fingerprinted by attackers).

3 Approach

In this section, we describe Revolver in detail, focusing
on the techniques that it uses to find similarities between
JavaScript files.

A high-level overview of Revolver is presented in Figure 3.
First, we leverage an existing drive-by-download detection
tool (an “Oracle”) to collect datasets of both benign and
malicious web pages (§3.1). Second, Revolver extracts the
ASTs (§3.2) of the JavaScript code contained in these pages
and, leveraging the Oracle’s classification for the code that
contains them, marks them as either benign or malicious.
Third, Revolver computes a similarity score for each pair of
ASTs, where one AST is malicious and the other one can
be either benign or malicious (§3.3–§3.4). Finally, pairs
that are found to have a similarity score higher than a given
threshold are further analyzed to identify and classify their
similarities (§3.5).

If Revolver finds similarities between two malicious
scripts, then we classify this case as an instance of evo-
lution (typically, an improvement of the original malicious
code). On the other hand, if Revolver detects similarities
between a malicious and a benign script, it performs an
additional classification step. In particular, similarities can
be classified by Revolver into one of four possible categories:
evasions, injections, data dependencies, and general evolu-
tions. We are especially interested in identifying evasions,
which indicate changes that cause a script that had been
found to be malicious before to be flagged as benign now.

It is important to note that, due to JavaScript’s ability to
produce additional JavaScript code on the fly (which enables
extremely complex JavaScript packers and obfuscators),
performing this analysis statically would not be possible.
Revolver works dynamically, by analyzing all JavaScript
code that is compiled in the course of a web page’s execution.
By including all these scripts, and the relationships between
them (such as what code created what other code), Revolver
is able to calculate JavaScript similarities among malicious
web pages to an extent that is not, to our knowledge, possible
with existing state-of-the-art code comparison tools.

3.1 Oracle

Revolver relies on existing drive-by-download detection
tools for a single task: the classification of scripts in web
pages as either malicious or benign. Notice that our approach
is not tied to a specific detection technique or tool; therefore,
we use the term “Oracle” to generically refer to any such
detection system. In particular, several popular low- and
high-interaction honeyclients (e.g., [6, 13, 25, 38]) or any
antivirus scanner can readily be used for Revolver.

Revolver analyzes the Abstract Syntax Trees (ASTs) of in-
dividual scripts rather than examining web pages as a whole.
Therefore, Revolver performs a refinement step, in which
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Figure 3: Architecture of Revolver.

i) individual ASTs are extracted from the web pages obtained
from the Oracle, ii) their detection status is determined (that
is, each AST is classified as either benign or malicious),
based on the page classification provided by the Oracle,
and iii) for each node in an AST, it is recorded whether the
corresponding statement was executed. Of course, if an
Oracle natively provides this fine-grained information, this
step can be skipped.

More precisely, Revolver executes each web page using
a browser emulator based on HtmlUnit [1]. The emula-
tor parses the page and extracts all of its JavaScript con-
tent (e.g., the content of script tags and the body of
event handlers). In particular, the ASTs of the JavaScript
code are saved for later analysis. In addition, to obtain
the AST of dynamically-generated code, Revolver executes
the JavaScript code. At the end of the execution, for each
node in the AST, Revolver keeps an execution bit to record
whether the code corresponding to that node was executed.
Whenever it encounters a function that generates new code
(e.g., a call to theeval() orsetTimeout() functions),
Revolver analyzes the code that is generated by these func-
tions. It also saves the parent-child relationship between
scripts, i.e., which script is responsible for the execution
of a dynamically-generated script. For example, the script
containing the eval() call is considered the parent of the
script that is evaluated. Similarly, Revolver keeps track of
which script causes network resources to be fetched, for
example, by creating an iframe tag.

Second, for each AST, Revolver determines if it is mali-
cious or benign, based on the Oracle’s input. More precisely,
an AST is considered malicious if it is the parent of a ma-
licious AST, or if it issued a web request that led to the
execution of malicious code. This makes Revolver flexible
enough to work with any Oracle.

3.2 Abstract Syntax Trees

Revolver’s core analysis is based on the examination of
ASTs rather than the source code of a script. The rationale
for using ASTs is that they abstract away details that are

irrelevant for our analysis (and, in fact, often undesirable),
while retaining enough precision to achieve good results.

For example, consider a script obtained from the code in
Figure 1 via simple obfuscation techniques: renaming of
variables and function names, introduction of comments,
and randomization of whitespace. Clearly, we want Revolver
to consider these scripts as similar. Making this decision can
be non-trivial when inspecting the source code of the scripts.
In fact, as a simple validation, we ran Moss, a system for
determining the similarity of programs, which is often used
as a plagiarism detection tool [37], on the original script and
the one obtained via obfuscation. Moss failed to flag the two
scripts as similar, as shown in the tool’s output here [23].
However, the two scripts are identical when their AST repre-
sentations are considered, since, in the trees, variables are
represented by generic VAR nodes, independently of their
names, and comments and whitespaces are ignored. This
makes tree-based code similarity approaches more suitable
for malicious JavaScript comparisons (and this is the reason
why our analysis leverages ASTs as well). However, as
shown in §3.4, we need to treat malicious code in a way
that is different from previous techniques targeting benign
codebases. Below, we describe our approach and necessary
extensions in more detail.

Revolver transforms the AST produced by the JavaScript
compiler into a normalized node sequence, which is the
sequence of node types obtained by performing a pre-order
visit of the tree. In total, there are 88 distinct node types,
corresponding to different constructs of the JavaScript lan-
guage. Examples of the node types includeIF,WHILE, and
ASSIGN nodes.

Figure 4 summarizes the data structures used by Revolver
during its processing. We discuss sequence summaries in
the next Section.

3.3 Similarity Detection

After extracting an AST and transforming it in its normal-
ized node sequence, Revolver finds similar normalized node
sequences. The result is a list of normalized node sequence
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Figure 4: Data structures used by Revolver.

pairs. In particular, pairs of malicious sequences are com-
pared to identify cases of evolution; pairs where one of the
sequences is benign and the other malicious are analyzed to
identify possible evasion attempts.

The similarity computation is based on computing the
directed edit distance between two node sequences, which,
intuitively, corresponds to the number of operations that are
required to transform one benign sequence into the malicious
one. Before discussing the actual similarity measurement,
we discuss a number of minimization techniques that we use
to make the computation of the similarity score feasible in
datasets comprising millions of node sequences.
Deduplication. As a first step to reduce the number of
similarity computations, we discard duplicates in our dataset
of normalized node sequences. Since we use a canonical
representation for the ASTs, we can easily and efficiently
compute hashes of each sequence, which enables us to
quickly identify groups of identical node sequences. In the
remaining processing phases, we only need to consider one
member of a group of identical node sequences (rather than
all of its elements). Notice that identical normalized node
sequences may correspond to different scripts, and may also
have a different detection classification (we describe such
cases in §3.5). Therefore, throughout this processing, we
always maintain the association between node sequences
and the scripts they correspond to, and whether they have
been classified as malicious or benign.
Approximate nearest neighbors. Given a repository of
n benign ASTs and m malicious ones, Revolver needs to
compute n×m comparisons over (potentially long) node
sequences. Even after the deduplication step, this may
require a significantly large number of operations.

To address this problem, we introduce the idea of se-
quence summaries. A sequence summary is a compact sum-
marization of a regular normalized node sequence, which
stores the number of times each node type appears in the cor-
responding AST. Since there are 88 distinct node types, each
node sequence is mapped into a point in an 88-dimensional
Euclidean space. An advantage of sequence summaries
is that they bound the length of the objects that will be
compared (from potentially very large node sequences, cor-
responding to large ASTs, down to more manageable vectors

of fixed length).
Then, for each sequence summary s, we identify its ma-

licious neighbors, that is, up to k malicious sequence sum-
maries t, such that the distance between s and t is less than
a chosen threshold τn. Intuitively, the malicious neighbors
correspond to the set of ASTs that we expect to be most
similar to a given AST. Determining the malicious neighbors
of a sequence summary is an instance of the k-nearest neigh-
bor search problem, for which various efficient algorithms
have been proposed. In particular, we solve it by using the
FLANN library [24].

In the remaining step, we compare sequence summaries
only with their malicious neighbors, thus dramatically re-
ducing the number of comparison to be performed.
Normalized node sequence similarity. Finally, we can
compute the similarity between two normalized node se-
quences. More precisely, Revolver compares the normalized
node sequence corresponding to a sequence summary s
with each normalized node sequence that corresponds to a
sequence summary of the malicious neighbors of s.

The similarity measurement is based on the pattern match-
ing algorithm by Ratcliff et al. [33]. More precisely, given
two node sequences, a and b, we first find their longest con-
tiguous common subsequence (LCCS). Then, we recursively
search for LCCS between the pieces of a and b to the left
and right of the matching subsequence. The similarity of a
and b is then returned as the number of nodes in common
divided by the total number of nodes in the malicious node
sequence. Therefore, identical ASTs will have similarity 1,
and the similarity values decrease toward zero as two ASTs
contain higher amounts of different nodes. This technique is
robust against injections, where one benign script includes a
malicious one, since all malicious nodes will be matched.

In addition to a numeric similarity score, the algorithm
also provides a list of insertions for the two node sequences,
that is, a list of AST nodes that would need to be added to one
sequence to transform it into the other one. This information
is very useful for our analysis, since it identifies the actual
code that was added to an original malicious code.

After the similarity score is computed, we discard any
pairs that have a similarity below a predetermined thresh-
old τs.
Expansion. Once pairs of ASTs with high similarity have
been identified, we need to determine the Oracle’s classifica-
tion of the scripts they originate from. We, therefore, expand
out any pairs that we deduplicated in the initial Deduplica-
tion step so that we associate the AST similarities to the
scripts that they correspond to.

3.4 Optimizations
There are several techniques that we utilize to improve
the results produced by the similarity detection steps. In
particular, our objective is to restrict the pairs identified
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as similar to “interesting” ones, i.e., those that are more
likely to correspond to evasion attempts or significant new
functionality. The techniques introduced here build upon
tree-based code similarity approaches and are specific to
malicious JavaScript.

Size matters. We observed that JavaScript code contains
a lot of very small scripts. In the extreme case, it includes
scripts comprising a single statement. We determined that
the majority of such scripts are generated dynamically
through calls to eval(), which, for example, dynamically
invoke a second function. Such tiny scripts are problematic
for our analysis: they have not enough functionality to per-
form malicious actions and they end up matching other short
scripts, but their similarity is not particularly relevant. As
a consequence, we combine ASTs that contain less than a
set number of nodes (τz). We do this by taking into account
how a script was generated: if another script generated code
under our threshold, we inline the generated script back to
its parent. If the script was not dynamically generated, then
we treat it as if one script contained all static code under our
threshold. This way the attacker cannot split the malicious
code into multiple parts under our threshold in order to evade
Revolver.

Repeated pattern detection. We also observed that, in
certain cases, an AST may contain a set of nodes repeated
a large number of times. This commonly occurs when the
script uses some JavaScript data structure that yields many
repeated AST nodes. For example, malicious scripts that un-
pack or deobfuscate their exploit payload frequently utilize
a JavaScript Array of elements to store the payload. Their
ASTs contain a node for every single element in the Array,
which, in many cases, may have thousands of instances. An
unwanted consequence, then, is that any script with a large
Array will be considered similar to the malicious script (due
to the high similarity of the array nodes), regardless of the
presence of a decoding/unpacking routine (which, instead,
is critical to determine the similarity of the scripts from a
functional point of view). These obfuscation artifacts affect
tree-based similarity algorithms, which will result in the
detection of similar code pairs where the common parts are
of no interest in the context of malicious JavaScript. To
avoid this problem, we identify sequences of nodes that are
repeated in a script more than a threshold (τp) and truncate
them.

Similarity fragmentation. Although we have identified
blocks of code that are shared across two scripts, it can be
the case that these blocks are not continuous. One script
can be broken down into small fragments that are matched
to the other script in different positions. This is why we
take into account the fragmentation of the matching blocks.
To prune these cases, we recognize a similarity only if the
fragmentation of the similarities is below a set threshold τ f .

AST Executed nodes Classification

= ∗ Data-dependency
∗ = Data-dependency

B ⊆ M �= JavaScript injection
M ⊆ B �= Evasion
�= �= General evolution

Table 1: Candidate pairs classification (B is a benign se-
quence, M is a malicious sequence, ∗ indicates a wildcard
value).

3.5 Classification

The outcome of the previous similarity detection step is
a list of pairs of scripts that are similar. As we show in
§5.1 we can have hundreds of thousands of similar pairs.
Therefore, Revolver performs a classification step of similar
pairs. That is, Revolver interprets the changes that were
made between two scripts and classifies them. There are two
cases, depending on the Oracle’s classification of the scripts
in a pair. If the pair consists solely of malicious scripts, then
we classify the similarity as a malicious evolution. The other
case is a pair in which one script is malicious and one script
is benign. We call such pairs candidate pairs (they need to
be further tested before we can classify their differences).
While the similarity detection has operated on a syntactic
level (essentially, by comparing AST nodes), Revolver now
attempts to determine the semantics of the differences.

In practice, Revolver classifies the scripts and their similar-
ities into one of several categories, corresponding to different
cases where an Oracle may flag differently scripts that are
similar. Table 1 summarizes the classification algorithm
used by Revolver.
Data-dependency category. Revolver checks if a pair of
scripts belongs to the data-dependency category. A typical
example of scripts that fall into this category is packers.
Packers are tools that allow JavaScript authors to deliver
their code in a packed format, significantly reducing the
size of the code. In packed scripts, the original code of
the script is stored as a compacted string or array, and its
clear-text version is retrieved at run-time by executing an
unpacking routine. Packers have legitimate uses (mostly,
size compression): in fact, several open-source popular
packers exist [9], and they are frequently used to distribute
packed version of legitimate JavaScript libraries, such as
jQuery. However, malware authors also rely on these very
same packers to obfuscate their code and make it harder to
be fingerprinted.

Notice that the ASTs of packed scripts (generated by
the same packer) are identical, independently of their (un-
packed) payload: in fact, they consist of the nodes of the
unpacking routine (which is fixed) and of the nodes holding
the packed data (typically, the assignment of a string literal
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to a variable). However, the actual packed contents, which
eventually determine whether the script is malicious or be-
nign, are not retained at the AST level of the packer, but the
packed content will eventually determine the nature of the
overall script as benign or malicious.

Revolver categorizes as data-dependent pairs of scripts
that are identical and have different detection classification.

As a slight variation to this scenario, Revolver also classi-
fies as data-dependent pairs of scripts for which the ASTs are
not identical, but the set of nodes that were actually executed
are indeed the same. For example, this corresponds to cases
where a function is added to the packer but is never actually
executed during the unpacking.
Control-flow differences. The remaining categories are
based on the analysis of AST nodes that are different in the
two scripts, and, specifically, of nodes representing control-
flow statement. We focus on such nodes because they give
an attacker a natural way to implement a check designed
to evade detection. In fact, such checks generally test a
condition and modify the control flow depending on the
result of the test.

More precisely, we consider the following control-flow
related nodes: TRY, CATCH, CALL, WHILE, FOR, IF, ELSE,
HOOK, BREAK, THROW, SWITCH, CASE, CONTINUE,
RETURN, LT (<), LE (<=), GT (>), GE (>=), EQ (==)
, NE (! =), SHEQ (===), SNE (! ==), AND, and OR.
Depending on where these control-flow nodes were added,
whether in the benign or in the malicious script, a candidate
pair can be classified as a JavaScript injection or an evasion.
Notice that we leverage here the execution bits to detect
control flow changes that were actually executed and affected
the execution of code that was found as malicious before.
JavaScript injection category. In some cases, malware
authors insert malicious JavaScript code into existing benign
scripts on a compromised host. This is done because, when
investigating a compromise, webmasters may neglect to
inspect files that are familiar to them, and thus such injections
can go undetected. In particular, it is common for malware
authors to add their malicious scripts to the code of popular
JavaScript libraries hosted on a compromised site, such as
jQuery and SWFObject.

In these cases, Revolver identifies similarities between
a benign script (the original, legitimate jQuery code) and a
malicious script (the library with the added malicious code).
In addition, Revolver detects that the difference between
the two scripts is due to the presence of control-flow nodes
in the malicious script (the additional code added to the
library), which are missing in the benign script. Revolver
classifies such similarities as JavaScript injections, since the
classification of the analyzed script changes from benign to
malicious due to the introduction of additional code in the
malicious version of the script.
Evasions category. Pairs of scripts that only differ because
of the presence of additional control-flow nodes in the benign

script are categorized as evasions. In fact, these correspond
to cases where a script, which was originally flagged as ma-
licious by an Oracle, is modified to include some additional
functionality that modifies its control flow (i.e., an evasive
check) and, as a consequence, appears to be benign to the
Oracle.
General evolution cases. Finally, if none of the previous
categories applies to the current pair of scripts, it means
that their differences are caused by the insertion of control-
flow nodes in both the benign and malicious scripts. Unlike
similarities in the evasion category, these similarities may
signify generic evolution between the two scripts. Revolver
flags these cases for manual review, at a lower priority than
evasive cases.

4 Implementation

In this section, we discuss specific implementation choices
for our approach.

We used the Wepawet honeyclient [6] as the Oracle of
Revolver. In particular, the input to Revolver was the web
pages processed by the Wepawet tool at real-time together
with their detection classification. We used Revolver to
extract ASTs from the pages analyzed by Wepawet, and to
perform the similarity processing described in the previous
sections.

As our processing infrastructure, we used a cluster of four
worker machines to process submissions in parallel with the
Oracle. Notice that all the steps in Revolver’s processing can
be easily parallelized. In terms of performance, we managed
to process up to 591,543 scripts on a single day, which was
the maximum number of scripts that we got on a single day
from the Oracle during our experiments.

We will now discuss the parameters that can be tuned in
our algorithms (discussed in §3), explaining the concrete
values we have chosen for our experiments.
Minimum tree size (τz). We chose 25 nodes as the min-
imum size of the AST trees that we will process before
combining them to their parent. Smaller ASTs can result
from calls to eval with tiny arguments, and from calls to
short event handlers, such as onLoad and onMouseOver. We
expect that such small ASTs correspond to short scripts that
do not implement any interesting functionality alone, but
complement the functionality of their parent script.
Minimum pattern size (τp). Another threshold that we
set is the minimum pattern size. Any node sequence that is
repeated more than this threshold is truncated to the threshold
value. The primary application of pattern detection is to
handle similar packers that decode payloads of different size.
We chose 16 for this value, as current packers either work on
relatively long arrays (longer than 16, and thus detected) or
on single strings (one node, and thus irrelevant to this issue).
This amount also excludes the possibility of compressing
interesting code sequences, since we rarely see such long
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Figure 5: Number of detected similarities as a function of
the distance threshold.

Figure 6: The resulting amount of similarities for different
similarity thresholds.

patterns outside of packed payloads. Reducing this value
would have the effect of making the tree similarity algorithm
much more lax.
Nearest neighbor threshold (τn). In the nearest neighbors
computation, we discard node sequences that are farther
than a given distance d from the node sequence currently
being inspected. We empirically determined a value for this
parameter, by evaluating various values for d and inspecting
the resulting similarities. From Figure 5, it is apparent that
the amount of similarities that are detected levels off fairly
sharply past d = 1,000. We determined that 10,000 is a safe
threshold that includes a majority of trees while allowing
the similarity calculation to be computationally feasible.
Normalized node sequence similarity threshold (τs).
Care has to be taken when choosing the threshold used
to identify similar normalized node sequences. Intuitively,
if this value is too low, we risk introducing significant noise
into our analysis, which will make Revolver consider as
similar scripts that in reality are not related to each other. On
the contrary, if the value is too high, it will discard interesting
similarities. Experimentally (see Figure 6), we determined
that this occurs for similarity values in the 70%–80% inter-
val. Therefore, we chose 75% as our similarity threshold
(in other words, only node sequences that are 75% or more
similar are further considered by Revolver).

Category
Similar
Scripts

# Groups
by malicious AST

JavaScript Injections 6,996 701
Data-dependencies 101,039 475
Evasions 4,147 155
General evolutions 2,490 273

Total 114,672 1,604

Table 2: Benign scripts from Wepawet that have similarities
with malicious scripts and their classification from Revolver.

5 Evaluation

We evaluated the ability of Revolver to aid in detecting
evasive changes to malicious scripts in real-world scenarios.
While Revolver can be leveraged to solve other problems,
we feel that automatically identifying evasions is the most
important contribution to improving the detection of web-
based malware.

5.1 Evasions in the wild

Revolver identifies possible evasion attempts by identifying
similarities between malicious and benign code. Therefore,
Revolver’s input is the output of any Oracle that classifies
JavaScript code as either malicious or benign. To evaluate
Revolver, we continuously submitted to Revolver all web
pages that Wepawet examined. Since September 2012, we
collected 6,468,623 web pages out of which 265,692 were
malicious. We analyzed 20,732,766 total benign scripts
and 186,032 total malicious scripts. Out of these scripts, we
obtained 705,472 unique benign ASTs and 5,701 unique
malicious ASTs.

Revolver applied the AST similarity analysis described in
Section 3, and extracted the pairs of similar ASTs. Table 2
summarizes the results of classifying these similarities in the
categories considered by Revolver. In particular, Revolver
identified 6,996 scripts where malicious JavaScript was
injected, 101,039 scripts with data-dependencies, 4,147
evasive scripts, and 2,490 scripts as general evolutions. We
observe that many of these scripts can be easily grouped by
their similarities with the same malicious script. Therefore,
for ease of analysis, we group the pairs by their malicious
AST component, and identify 701 JavaScript injections, 475
data-dependencies, 155 evasions, and 273 general evolu-
tions. Our results indicate a high number of malicious scripts
that share similarities with benign ones. This is due to the
fact that injections and data-dependent malicious scripts
naturally share similarities with benign scripts and we are
observing many of these attacks in the wild.

To verify the results produced by Revolver, we manually
analyzed all groups categorized as “evasions”. For the
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rest of the categories we grouped the malicious ASTs into
families based on their similarities with each other and
examined a few similar pairs from each family. We found
the results for the JavaScript injection and data-dependencies
categories to be correct. The reason why Revolver classified
a large number of scripts as data-dependencies is due to the
extensive use of a few popular packers, such as the Edwards’
packer [9]. For example, the jQuery library was previously
officially distributed in a packed state to reduce its size.

Of the 155 evasions groups, we found that only five were
not intended evasion attempts. We cannot describe all eva-
sions in detail here, but we provide a brief summary for the
most interesting ones in the next section.

The pairs in the “general evolutions” category consisted of
cases where Revolver identified control flow changes in both
the benign and malicious scripts. We manually looked into
them and did not find any behavior that could be classified
as evasive.

5.2 Evasions case studies

The evasions presented here exploit differences in the im-
plementation of Wepawet’s JavaScript interpreter and the
one used by regular browsers. Notice that these evasions
can affect Oracles other than Wepawet; in particular, low-
interaction honeyclients, such as the popular jsunpack [13]
and PhoneyC [25].

We describe in more detail a subset of the evasions that
we found from our experiment on real-world data. In the 22
evasion groups described here, we identified seven distinct
evasion techniques, and one programming mistake in a
malicious PDF.

We found three cases which leveraged subtle details in
the handling of regular expressions and Unicode to cause
a failure in a deobfuscation routine when executing in the
Oracle (on the contrary, regular browsers would not be af-
fected). In another case, the attackers replaced the JavaScript
code used to launch an ActiveX exploit code with equivalent
VBScript code. This is done because Internet Explorer can
interpret VBScript, while most emulators do not support it.
In a different case, the evasive code creates a div tag and
checks for specific CSS properties, which are set correctly in
Internet Explorer but not when executing in our Oracle. We
will examine in more detail the next four evasion techniques.

Variable scope inside eval. We found that a successful
evasion attack can be launched with minor changes to a
malicious script. In one such case, shown in Figure 7, the
authors of the malicious script changed a replace call with
a call to eval, which, in turn, executed the same replace.
While this change did not affect the functionality of the
script in Internet Explorer, it did change it for our Oracle.
In fact, in Wepawet’s JavaScript engine, the code inside the
eval runs in a different scope, and thus, the locally-defined
variable on which replace is called is not accessible. While

1 // Malicious
2 function foo() {
3 ...
4 W6Kh6V5E4 = W6Kh6V5E4.replace(/\W/g,Bm2v5BSJE);
5 ...
6 }
7 // Evasion
8 function foo(){
9 ...

10 var enryA = mxNEN+F7B07;
11 F7B07 = eval;
12 {}
13 enryA = F7B07('enryA.rep' + 'lace(/\\W/g,CxFHg)←↩

');
14 ...
15 }

Figure 7: Evasion based on differences in the scope handling
inside eval in different JavaScript engines.
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Figure 8: Timeline of PDF evasions automatically detected
by Revolver.

the code successfully exploits Internet Explorer, it fails in
our Oracle and is marked as benign.

Adobe-specific JavaScript execution. Figure 9 shows
an evasion that leverages a specific characteristic of the
JavaScript engine implementation included in Adobe Reader.
In particular, in Adobe’s engine (unlike other engines), the
eval function is accessible as a property of native objects,
e.g., a string (line 8) [2]. Wepawet’s analyzer is not aware
of this difference and fails on scripts that make use of this
feature (marking them as benign). The functionally-identical
script that does not use this trick, but directly invokes the
eval() function, is correctly marked as malicious. We also
found several instances of evasions related to PDF specific
objects, like app and target, where missing functionality
was used to render the malicious script harmless. We show a
snippet of this evasion type found in the wild in Figure 10.

In Figure 8 we see the evasions related to the app object
that were automatically detected by Revolver as found in
the wild. Every time Revolver detected an evasion there is a
spike in the figure, and we made the appropriate patches to
Wepawet as soon as possible. What is of particular interest
is the fact that attackers react to Wepawet’s patching by
introducing a new evasion within a few days, making a
tool like Revolver necessary to automatically keep track of
this behavior and keep false negative detections as low as
possible.

Evasion through exceptions. Another interesting eva-
sion that Revolver found also leverages subtle differences
in the JavaScript implementation used in Wepawet and in
real browsers. In this case, the malicious script consists of a
decryption function and a call to that function. The function
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1 // Malicious
2 OlhG='evil_code'
3 wTGB4=eval
4 wTGB4(OlhG)
5
6 // Evasion
7 OlhG='evil_code'
8 wTGB4="this"["eval"]
9 wTGB4(OlhG)

Figure 9: Evasion based on the ability to access the eval
function as a property of native objects in Adobe’s JavaScript
engine.

1 if((app.setInterval+/**/"")["indexOf"](aa)!=-1){
2 a=/**/target.creationDate.split('|')[0];}

Figure 10: Evasion based on PDF specific objects app and
target.

first initializes a variable with a XOR key, which will be used
to decrypt a string value (encoding a malicious payload).
The decoded payload is then evaluated via eval.

The evasion that we found follows the same pattern (see
Figure 11), but with a few critical changes. In the modified
code, the variable containing the XOR key is only initialized
the first time that the decryption function runs; in sequential
runs, the value of the key is modified in a way that depends
on its prior value (Lines 16–17). After the key computation,
a global variable is accessed. This variable is not defined
the first time the decryption function is called, so that the
function exits with an exception (Line 19). On Internet
Explorer, this exception is caught, the variable is defined,
and the decryption function is called again. The function
then runs through the key calculation and then decrypts and
executes the encrypted code by calling eval.

On our Oracle, a subtle bug (again, in the handling of
eval calls) in the JavaScript engine caused the function
to throw an exception the first two times that it was called.
When the function is called the third time, it finally succeeds,
modifies the XOR key, and attempts to decrypt the string.
However, since the key calculation is run three times instead
of two, the key is incorrect, and the decrypted string results
in garbage data. We found three variations of this technique
in our experiments.

A very interesting exception-based evasion that we found
with Revolver was based on the immutability of window-
.document.body. The attacker checks if she can replace
the body object with a string, something that should not be
possible and should result in an exception, but it does not
raise an exception in our Oracle because the body object is
mutable. The interesting part is that we found three com-
pletely different malicious scripts evolving to incorporate
this evasion, one of them being part of the popular exploit
kit Blackhole 2.0. This is the first indication that evasion
techniques are propagating to different attacking compo-

1 // Malicious
2 function deobfuscate(){
3 ... // Define var xorkey and compute its ←↩

value
4 for(...) { ... // XOR decryption with xorkey←↩

}
5 eval(deobfuscated_string);
6 }
7 try {
8 eval('deobfuscate();')
9 }

10 catch (e){
11 alert('err');
12 }
13
14 // Evasion
15 function deobfuscate(){
16 try { ... // is variable xorkey defined? }
17 catch(e){ xorkey=0; }
18 ... // Compute value of xorkey
19 VhplKO8 += 0; // throws exception the first ←↩

time
20 for(...) { ... // XOR decryption with xorkey←↩

}
21 eval(deobfuscated_string);
22 }
23 try { eval('deobfuscate();') } // 1st call
24 catch (e){
25 // Variable VhplKO8 is not defined
26 try {
27 VhplKO8 = 0; // define variable
28 eval('deobfuscate();'); // 2nd call
29 }
30 catch (e){
31 alert('ere');
32 }
33 }

Figure 11: An evasion taking advantage of a subtle bug in
Wepawet’s JavaScript engine in order to protect the XOR
key.

nents and indicates that attackers care to keep their attacks
as stealthy as possible.

Unicode deobfuscation evasion. This evasion lever-
aged the fact that Unicode strings in string initializations
and regular expressions are treated differently by different
JavaScript engines. For example, Revolver found two scripts
with a similarity of 82.6%. The script flagged as benign
contained an additional piece of code that modified the way a
function reference to evalwas computed. More precisely,
the benign script computed the reference by performing a
regular expression replacement. While this operation ex-
ecutes correctly in Internet Explorer, it causes an error in
the JavaScript engine used by Wepawet due to a bug in the
implementation of regular expressions.

Incorrect PDF version check. Another similarity that
Revolver identified involved two scripts contained inside two
PDF files, one flagged as benign by Wepawet and the other
as malicious. These scripts had a similarity of 99.7%. We de-
termined that the PDF contained an exploit targeting Adobe
Reader with versions between 7.1 and 9. The difference
found by Revolver was caused by an incorrect version check
in the exploit code. The benign code mistakenly checked
for version greater or equal to 9 instead of less or equal to 9,
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which combined with the previous checks for the version
results in an impossible browser configuration and as a con-
sequence the exploit was never fired. This case, instead of
being an actual evasion, is the result of a mistake performed
by the attacker. However, the authors quickly fixed their
code and re-submitted it to Wepawet just 13 minutes after
the initial, flawed submission.

False positives. The evasion groups contained five false
positives. In this context, a false positive means that the
similarity identified by Revolver is not responsible for the
Oracle’s misdetection. More precisely, of these false posi-
tives, four corresponded to cases where the script execution
terminated due to runtime JavaScript errors before the actual
exploit was launched. While such behavior could be evasive
in nature, we determined that the errors were not caused by
any changes in the code, but by other dependencies. These
can be due to missing external resources required by the
exploit or because of a runtime error. In the remaining
case, the control-flow change identified by Revolver was not
responsible for the misdetection of the script.

Revolver’s impact on honeyclients. By continuously
running Revolver in parallel with a honeyclient, we can im-
prove the honeyclient’s accuracy by observing the evolution
of malicious JavaScript. The results from such an integra-
tion with Wepawet indicate a shift in the attackers’ efforts
from hardening their obfuscation techniques to finding dis-
crepancies between analysis systems and targeted browsers.
Popular exploit kits like Blackhole are adopting evasions
to avoid detection, which shows that such evasions have
emerged as a new problem in the detection of malicious web
pages. Revolver’s ability to pinpoint, with high accuracy,
these new techniques out of millions of analyzed scripts
not only gives a unique view into the attackers’ latest steps,
but indicates the necessity of such system as part of any
honeyclient that analyzes web malware.

6 Discussion

As with any detection method, malware authors could find
ways to attempt to evade Revolver. One possibility consists
in splitting the malicious code into small segments, each
of which would be interpreted separately through eval.
Revolver is resilient against code fragmentation like this
because it combines such scripts back to the parent script
that generated them, reconstructing this way the original
non-fragmented script.

It is also possible for malware authors to purposefully
increase the Euclidean distance between their scripts so that
otherwise similar scripts are no longer considered neighbors
by the nearest neighbor algorithm. For example, malware
authors could swap statements in their code, or inject junk
code that has no effect other than decreasing the similar-
ity score. Attackers could also create fully metamorphic
scripts, similar to what some binary malware does [19]. We

can counteract these attacks by improving the algorithms
we use to compute the similarity of scripts. For example,
we could use a preprocessing step to normalize a script’s
code (e.g., removing dead code). A completely different
approach would be to leverage Revolver to correlate differ-
ences in the code of the same web pages when visited by
multiple oracles: if Revolver detects significant differences
in the code returned during these visits, then we can identify
metamorphic web pages. In addition, metamorphic code
raises the bar, since an attack needs to be programmatically
different every time, and the code must be automatically gen-
erated without clearly-detectable patterns. Therefore, this
would force attackers to give up their current obfuscation
techniques and ability to reuse code.

An attacker could include an evasion and dynamically
generate the attack code only if the evasion is successful. The
attacker has two options: He can include the evasion code
as the first step of the attack, or after initial obfuscation and
environment setup. Evasions are hard to find and require sig-
nificant manual effort by the attackers. Therefore, attackers
will not reveal their evasion techniques since they are almost
as valuable as the exploits they deliver. Moreover, introduc-
ing unobfuscated code compromises the stealthiness of the
attack and can yield into detection through signature match-
ing. The second option works in Revolver’s favor, since it
allows our system to detect similarities in obfuscation and in
environmental setup code.

Finally, an operational drawback of Revolver is the fact
that manual inspection of the similarities that it identifies
is currently needed to confirm the results it produces. The
number of similarities that were found during our experi-
ments made it possible to perform such manual analysis. In
the future, we plan to build tools to support the inspection of
similarities and to automatically confirm similarities based
on previous analyses.

7 Related Work

Detection of evasive code. The detection of code that
behaves differently when run in an analysis environment
than when executed on a regular machine is a well-known
problem in the binary malware community. A number
of techniques have been developed to check if a binary is
running inside an emulator or a virtual machine [10, 30, 36].
In this context, evasive code consists of instructions that
produce different results or side-effects on an emulator and
on a real host [21,26]. The original malware code is modified
to run these checks: if the check identifies an analysis system,
the code behaves in a benign way, thus evading the detection.

Researchers have dealt with such evasive checks in two
ways. First, they have designed systems that remain transpar-
ent to a wide range of malware checks [8, 39]. Second, they
have developed techniques to detect the presence of such
checks, for example by comparing the behavior of a sample
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on a reference machine with that obtained by running it on
an analysis host [3, 15].

Similar to the case of evasions against binary analysis
environments, the results produced by honeyclients (i.e.,
the classification of a web page as either malicious or be-
nign) can be confused by sufficiently-sophisticated evasion
techniques. Honeyclients are not perfect and attackers have
found ways to evade them [16, 31, 40]. For example, mali-
cious web pages may be designed to launch an exploit only
after they have verified that the current visitor is a regular
user, rather than an automated detection tool. A web page
may check that the visitor performs some activity, such as
moving the mouse or clicking on links, or that the browser
possesses the idiosyncratic properties of commonly-used
modern browsers, rather than being a simple emulator. If any
of these checks are not satisfied, the malicious web page will
refrain from launching the attack, and, as a consequence, will
be incorrectly classified as benign, thus evading detection.

The problem of evasive code in web attacks has only
recently been investigated. Kolbitsch et al. [17] have stud-
ied the “fragility” of malicious code, i.e., its dependence
for correct execution on the presence of a particular ex-
ecution environment (e.g., specific browser and plugins
versions). They report several techniques used by malicious
code for environment matching: some of these techniques
may well be used to distinguish analysis tools from regu-
lar browsers and evade detection. They propose ROZZLE,
a system that explores multiple execution paths in a pro-
gram, thus bypassing environment checks. Rozzle only
detects fingerprinting that leverages control flow branches
and depends upon the environment. It can be evaded by
techniques that do not need control-flow branches, e.g.,
those based on browser or JavaScript quirks. For exam-
ple, the property window.innerWidth contains the
width of the browser window viewport in Firefox and
Chrome, and is undefined in Internet Explorer. There-
fore, a malicious code that initialized a decoding key as
xorkey=window.innerWidth*0+3 would compute a differ-
ent result for xorkey in Firefox/Chrome (3) and IE (Not a
Number error), and could be used to decode malicious code
in specific browsers. Rozzle will not trigger its multi-path
techniques in such cases and can be evaded.

Revolver takes a different approach to identifying evasive
code in JavaScript programs. Instead of forcing an evasive
program to display its full behavior (by executing it in paral-
lel on a reference host and in an analysis environment [3],
or by forcing the execution through multiple, interesting
paths [17]), it leverages the existence of two distinct but sim-
ilar pieces of code and the fact that, despite their similarity,
they are classified differently by detection tools. In addition,
Revolver can precisely and automatically identify the code
responsible for an evasion.
JavaScript code analysis. In the last few years, there
have been a number of approaches to analyzing JavaScript

code. For example, Prophiler [5] and ZOZZLE [7] have
used characteristics of JavaScript code to predict if a script
is malicious or benign. ZOZZLE, in particular, leverages
features associated with AST context information (such as,
the presence of a variable named scode in the context of a
loop), for its classification.

Cujo [34] uses static and dynamic code features to identify
malicious JavaScript programs. More precisely, it processes
the static program and traces of its execution into q-grams
that are classified using machine learning techniques.

Revolver performs the core of its analysis statically, by
computing the similarity between pairs of ASTs. How-
ever, Revolver also relies on dynamic analysis, in particular
to obtain access to the code generated dynamically by a
script (e.g., via the eval() function), which is a common
technique used by obfuscated and malicious code.
Code similarity. The task of automatically detecting
“clones,” i.e., segments of code that are similar (accord-
ing to some notion of similarity), is an established line of
work in the software engineering community [27, 35]. Un-
fortunately, many of the techniques developed here assume
that the code under analysis is well-behaved or at least not
adversarial, that is, not actively trying to elude the classi-
fication. Of course, this assumption does not hold when
examining malicious code.

Similarity between malicious binaries has been used to
quickly identify different variants of the same malware
family. The main challenge in this context is dealing with
extremely large numbers of samples without source code and
large feature spaces from runtime data. Different techniques
have been proposed to overcome these issues: for example,
Bayer et al. [4] rely on locality sensitive hashing to reduce
the number of items to compare, while Jong et al. [14] use
feature hashing to reduce the number of features.

As a comparison, Revolver aims not only to identify pieces
of JavaScript code that are similar, but also to understand why
they differ and especially if these differences are responsible
for changing the classification of the sample.

8 Conclusions

In this paper, we have introduced and demonstrated Re-
volver, a novel approach and tool for detecting malicious
JavaScript code similarities on a large scale. Revolver’s
approach is based on identifying scripts that are similar
and taking into account an Oracle’s classification of every
script. By doing this, Revolver can pinpoint scripts that have
high similarity but are classified differently (detecting likely
evasion attempts) and improve the accuracy of the Oracle.

We performed a large-scale evaluation of Revolver by
running it in parallel with the popular Wepawet drive-by-
detection tool. We identified several cases of evasions that
are used in the wild to evade this tool (and, likely, other tools



650 22nd USENIX Security Symposium USENIX Association

based on similar techniques) and fixed them, improving this
way the accuracy of the honeyclient.
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